Buktikan bahwa \[\large \begin{align*} a^2+b^2=(a+b)^2-2ab \end{align*}\]
Penyelesaian:
\[\large \large \begin{align*} (a+b)^2&=a^2+2ab+b^2\\ &=a^2+b^2+2ab\\ (a+b)^2&-2ab=a^2+b^2 \end{align*}\]
Terbukti bahwa \[\large \large \begin{align*}\color{Orange}{ a^2+b^2=(a+b)^2-2ab} \end{align*}\]
Buktikan bahwa \[\large \begin{align*} a^3+b^3=(a+b)^3-3ab(a+b) \end{align*}\]
Penyelesaian:
\[\large \large \begin{align*} (a+b)^3&=a^3+3a^2b+3ab^2+b^3\\ &=a^3+b^3+3a^2b+3ab^2\\ &=a^3+b^3+3ab(a+b)\\ (a+b)^3&-3ab(a+b)=a^3+b^3 \end{align*}\]
Buktikan bahwa \[\large \begin{align*} a^2+b^2+c^2=(a+b+c)^2-2(ab+ac+bc) \end{align*}\]
Buktikan bahwa \[\large \begin{align*} a^3+b^3+c^3=(a+b+c)^3-3(a+b)(a+c)(b+c)\\ \end{align*}\]
Penyelesaian:
\[\large \begin{align*} (a+b+c)^3&=(a+(b+c))^3\\ &=a^3+3a^2(b+c)+3a(b+c)^2+(b+c)^3\\ &=a^3+3a^2(b+c)+3a(b+c)^2+b^3+3b^2c+3bc^2+c^3\\ &=a^3+b^3+c^3+3a^2(b+c)+3a(b+c)^2+3bc(b+c)\\ &=a^3+b^3+c^3+3(b+c)\left [a^2+a(b+c)+bc\right ]\\ &=a^3+b^3+c^3+3(b+c)\left [a^2+ab+ac+bc\right ]\\ &=a^3+b^3+c^3+3(b+c)\left [a(a+b)+c(a+b)\right ]\\ &=a^3+b^3+c^3+3(b+c)\left [(a+b)(a+c)\right ]\\ &=a^3+b^3+c^3+3(a+b)(a+c)(b+c)\\ (a+b+c)^3&-3(a+b)(a+c)(b+c)=a^3+b^3+c^3\\ \end{align*}\]